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It is shown that measurements of the statistical properties of the concentration 
distributions of dispersing scalars taken from many different turbulent shear flows 
have a great number of common features. In particular the same simple relationship 
between the mean concentration and the mean-square fluctuation is shown to hold 
in all the flows, and this relationship is derived theoretically from well-known results 
for the unreal case when there is no molecular diffusion by a natural hypothesis about 
the effects of molecular diffusion. Application of the hypothesis to the higher 
moments and shape parameters gives results that  agree reasonably well with the 
data (given the unavoidable experimental errors). The hypothesis should be 
subjected to further experimental analysis, and could simplify the application of 
turbulence closures and similar models. Extensions of the ideas to the probability 
density function of the scalar concentration suggest that  it becomes self-similar. A 
final conclusion is that  more attention to experimental errors due to instrument 
smoothing is highly desirable. 

1. Introduction 
This paper is concerned with the statistical properties of scalars dispersing in 

turbulent shear flows and, more particularly, with the interpretation of many sets of 
measurements of such properties. It seems appropriate that this paper should appear 
in a volume in honour of Professor George Batchelor since its aim is the same as that 
of his pioneering and characteristically distinctive work on homogeneous scalar fields 
(Batchelor 1959 ; Batchelor, Howells & Townsend 1959), namely to  increase 
understanding of the effects of the basic processes of advection and molecular 
diffusion. This aim is common to all research on turbulent diffusion, whether 
experimental or theoretical, but the methodology of the present work is unusual in 
that it does not consider one particular flow but searches for, and identifies, features 
that data from a wide variety of flows have in common. These common features are 
consistent, broadly, with a very simple physical framework, and this fact has 
consequences that seem important, and are discussed. 

It is useful first to summarize the basic terminology and notation that will be used 
throughout. Consider an ensemble of realizations of any particular dispersion 
experiment. Let F(x,  t )  denote the concentration of the scalar (in arbitrary units) at 
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position x and time t in one realization, and let p(6; x, t )  be the probability density 
function (p.d.f.) of T(x,t) for the specified ensemble. Thus, for 8 2 0, 

(Although the term concentration will be used throughout, the whole paper applies 
also to cases where the scalar is heat and T ( x , t )  is the temperature difference from 
an ambient.) All statistical properties of r considered in this paper can be defined in 
terms of p. For example, the (ensemble) mean concentration C(x, t )  satisfies 

C(X, t )  = @(8; X, t )  do. La, 
Of course C ( x , t )  is the same mean concentration that occurs in the Reynolds 
decomposition r(x,t) = C ( x , t ) + c ( x , t ) ;  r= c, c =  0, 

where the overbar denotes an ensemble mean, and c ( x , t )  is the concentration 
fluctuation. The mean-square fluctuation C"(x, t )  is the variance of T(x,t) and 
therefore satisfies 

J o  J o  

higher moments (z(x, t ) ,  ?(x, t), . ..) are defined analogously. 
In  general, and this includes most applications to oceanic and atmospheric 

dispersion, p(0; x, t )  depends explicitly on all three components of x and on t ; in such 
circumstances ensemble means like C ( x , t )  and t ( x , t )  can be estimated from 
experiments only by appropria,te arithmetical averages over a (sufficiently large) 
number of repeat realizations. However, in the common laboratory situation when 
p(6; x, t) is independent of t ,  so are properties like C, 2,. . . , and they can then be 
estimated by time averages of the record of one realization according to the ergodic 
principle. All data considered in this paper belong to this latter category. 

2. Some data on C and 3 
Table 1 gives information about some typical experiments on scalar dispersion, 

but conducted in a variety of self-similar turbulent shear flows. It is clear that these 
also encompass several different scalar contaminants, including heat and smoke, and 
a range of measurement techniques. 

Despite the differences in the configurations, all the experiments in table 1 (and 
ncarly all similar ones that have been examined) have two common features. 

First, in each case, the profiles of C and 3 are themselves self-similar (or 
approaching self-similarity). Let z denote distance downstream from the (effective) 
source in the direction of mean flow and let C,(z) denote the maximum value of C a t  
each cross-section. In cases like jets and wakes, C,(z) is the centreline value and, for 
turbulent boundary layers with the source a t  the wall, i t  is the wall value. The self- 
similar structure observed in the profiles of C and c" shows that there is a transverse 
lengthscale L( x )  which, when used to non-dimensionalize the transverse coordinate( s) 
in plane or cylindrical geometry, produces a dimensionless transverse coordinate 11 
such that, for sufficiently large z,  

C(x) = Co(z)J%); a x )  = C;(Z)f(r), (2.1) 
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NO. WORKERS FLOW 

( 1 )  Becker et al. (1967) Round jet 

(2) LaRue & Libby (1974) Plane wake 

M E A S U R E M E N T  

SCALAR TECHNIQUE 

Oil smoke Light-scatter 

Heat Platinum wire 
resistance 
thermometer 

(3) Antonia et al. (1975) Round jet with Heat Platinum/ 10 YO 
coflowing stream rhodium wire 

(4) Sreenivasan, Danh & Smooth-walled Heat Wollaston wire 

(5) Shaughnessy & Morton Round jet exhausting Smoke Light scatter 

Antonia (1976) boundary layer 

(1977) into a secondary air particles 
flow 

(6) Birch et al. (1978) Round methane jet Methane Raman scattering of 

(7) Gad-el-Hak & Morton Grid turbulence Smoke Laser anemometer 
(1979) particles 

(8) Fackrell & Robins Rough-walled Propane/ Flame ionisation 
(1982) boundary layer helium detector system 

laser light 

mixture 

(9) Antonia et al. (1983~) Plane jet Heat Wollaston wire 

TABLE 1 .  Experiments in which profiles of C and 2 were measured 

..* * *  

C= 
- 0.2 c, 
- o . 3 1 * *  0.1 

1 2 -  
11 

FIGURE 1 .  Data from Antonia et al. (1975). 

FLM 212 
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with F ( 0 )  = 1 because of the definition of C,(z). In  most flows, including all those in 
table 1, F ( q )  is Gaussian, or approximately so. 

The second feature that all the experiments in table 1 have in common is that f(7j) 

in (2.1) has a maximum a t  a non-zero value of 7 of order 1. Figure 1, adapted from 
Antonia, Prabhu & Stephenson (1975), is entirely typical of all the datasets. 

3. A simple framework and its development 
The features that have just been identified appear to be very robust ; in particular 

the second feature occurs whatever the type of shear flow, or dispersing scalar, or 
measurement technique. It does not appear to matter whether the scalar is passive, 
or not. 

Use of a simple framework helps understanding of this behaviour and aspects of 
i t  were discussed in many of the papers listed in table 1 and elsewhere (e.g. Chevray 
& Tutu 1977; Chatwin & Sullivan 1987a, b) .  Consider, for a moment, dispersion of 
a scalar in a turbulent shear flow in the hypothetical situation when there is no 
molecular diffusion (or when molecular diffusion has negligible effect). Suppose that 
the concentration a t  the source is uniform and equal to el;  the assumption of 
uniformity applies to all the experiments in table 1. Then p(B;x,t), the p.d.f. of 
concentration defined in ( l . l ) ,  must have the familiar structure: 

(3.1) 

In  (3.1), n(x, t) is the intermittency factor, i.e. the probability that T(x, t) > 0. For 
this hypothetical situation n(x,t) is also of course the probability that the fluid 
particle that happens to be at position x at  time t emanated from the source; see 
Chatwin & Sullivan (1989 a, b) .  

p ( o ;  x, t )  = n(x, t )  ~ ( 0 - 0 , )  +{I  -+, t )>s(e).  

It now follows from (1.2) and (1.4) that 

C(x,t) = 8,n; Z(x,t) = 6y7r(l-T), 

c* = c(e,-c) = (LO 2 1  )z-(c-+el)2. 

and, on eliminating n, that  
- 

Hence, in this hypothetical situation, 3 has a maximum value of $9; which it takes 
at all points on the surface C(x, t) = $O1. The schematic figure 2 shows the transverse 
and axial variations of 216: predicted by (3.3) for a case when 

(3.4) 

for z $ d, where d is the source diameter. While (3.4) is typical of observed behaviour 
in jets (Becker, Hottel & Williams 1967), the main features of figure 2 are 
independent of (3.4) ; indeed (3.3) - and therefore the general properties of the curves 
in figure 2 ~ does not require self-similar or even steady behaviour, or that the scalar 
be passive. 

A brief examination of the datasets listed in table 1 shows, unsurprisingly, that 
they are not quantitatively consistent with (3.3). Nevertheless, there are suggestive 
points of qualitative agreement. It has already been noted that all the observed 
transverse profiles have the off-axis maximum a t  7 = O( 1) that is observed a t  Station 
A in figure 2(b) (refer to figure 1). Also, those papers presenting the axial variation 
of 3/87 (Becker et al. 1967; Birch et al. 1978; Fackrell & Robins 1982; Pitts & 
Kashiwagi 1984) show a maximum as in figure 2(c).  However, the measured 
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C(x, t )  = p, Mean 
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FIGURE 2. Schematic diagrams showing profiles of t / O :  given by (3.3) and (3.4) : (a) geometry ; (b) 
transverse profiles; (c) axial profile (7 = 0). Note that e ' /O;  < $ everywhere except on the surface 
indicated in (a), and that maxima in the profiles occur on crossing this surface. 

maximum values of z/O: are significantly less than 0.25, predicted by (3.3). For 
example, Becker et al. (1967, figure 7) observe a maximum value of z/O: on the 
centreline of order 0.018, occurring when C/O, x 0.77 (not 0.5 as predicted by (3.3)), 
and z /d  !z 13.2. Figure 3 (Chatwin & Sullivan 1985, figure 3) illustrates typical 
quantitative deviations from (3.3) for transverse profiles. 

3.1. A hypothesis concerning the effects of molecular diffusion 

Molecular diffusion has several interrelated effects that invalidate (3.3) for real flows. 
Most fundamentally perhaps, the maximum concentration occurring a t  any point 

18-2 
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15 

10 

{ q e ,  - c)/9+ 

5 

0 

1 _____________-________-- - - - - - -  
I I I I I 

1 2 
t 

FIGURE 3. Data from Birch et al. (1978) 0, x , are for z /d  = 20, 30, 40 respectively. 
Had the data agreed with (3.3), all points would be on the dashed line. 

during any realization is less than the source concentration 8, by a factor that 
increases with z .  Also molecular diffusion causes c" to be dissipated in a way that 
depends not only on this reduction of the maximum concentration, but also on the 
statistical properties of the velocity field inasmuch as these determine the geometrical 
properties of the scalar-containing volumes emanating from the source. Not 
surprisingly, Professor George Batchelor was one of the first to  identify the crucial 
importance of the latter point (Batchelor 1952), and its relationship to the 
dissipation of 3 was subsequently explored by him (Batchelor 1959; Batchelor et al. 
1959) and many others. For well understood physical reasons that need not be 
repeated here, the magnitudes and variations of C(x, t )  and ?(x, t )  do not, however, 
depend (to any measurable degree a t  least) on the value of K ,  the molecular 
diffusivity ; this is consistent with the results of the datasets in table 1 for which there 
are wide variations in K .  

The effects of K identified above occur on a very small lengthscale (of order equal 
to Batchelor's conduction cut-off length h which is typically of magnitude lop4- 

m). Given this, it  is natural to attempt to account for the effect of K on the maxi- 
mum concentration by replacing in (3.3) by a local concentration scale aC,(z), 
where C,(z) is the maximum mean concentration a t  downstream distance z defined in 
(2.1). In general, a will depend on factors like the type of flow and source geometry 
(but not on K ) ,  and on x and t .  However, in the statistically self-similar and steady 
conditions that apply for all the experimental data considered in this paper, a can 
depend only on similarity variables like 7. But the further hypothesis will be made 
here that in such cases a is a constant of order unity. This is not only the simplest 
possible assumption but it has the physical justification (to be considered further in 
$ 5  below) that the evolution of the contaminant distribution is controlled by the 
large eddies of the velocity field so that only one concentration scale is relevant a t  
any cross-section ; this can obviously be taken to be a multiple of Ca(z). In  the first 
instance, therefore, the hypothesis is that (3.3) should be replaced by c2 = C(aC,-C). 
However, this requires the value of a to account for both effects of K described above, 
and this seems likely to be unreasonable in general. There is no conceptual difficulty 
in extending the hypothesis by including a reduction factor /3 in the equation for 2 
to allow separately for dissipation. It will also be assumed (for the reasons given 
above in the case of a) that p i s  a constant independent of K .  Therefore the main work 
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of the remainder of this section will be to invcstigate whether the datasets in table 1 
satisfy 

with C = C(z,y),? = ?(z,y), and a and /3 constant. 
Before giving the results of this investigation, it is helpful to mention two points 

that will be discussed in some detail in $5  below. Although (3.3) was derived from the 
explicit exact form (3.1) for the p.d.f. of T(x,  t ) ,  no hypothesis has yet been made here 
concerning the p.d.f. in real flows that may lead to (3.5). Secondly, increasing 
attention (Sullivan 1984; Carn & Chatwin 1985; Chatwin & Sullivan 1987a, 1989a, 
b ;  Derksen & Sullivan 1987, 1989; Mole & Chatwin 1987; Mole 1989, 1990) is being 
given to the differences between actual and perceived (i.e. measured) values of c" (and 
other statistical properties of c(z, t ) )  that may occur due to instrument smoothing; if 
there are such differences they may well affect the values of a and/or 1, but they do 
not affect the data analysis and will be ignored in the remainder of this section. 

2 = /3C(aC0-C), (3 .5)  

3.2. Comparison of (3.5) with the datasets in table 1 

After proposing (3.5) and drawing several of the graphs in figure 4 below, the authors 
discovered that Becker et al. (1967, figure 8) had shown that their data followed (3.5) 
'highly accurately' with a x 1.31 and /3 M 0.156. However, no physical explanation 
of its validity was attempted in that paper, and its status until now was purely 
empirical. 

The procedure adopted to test whether (3.5) described the other datasets in table 
1 was, first, to determine a by the location of the maximum in the (self-similar) 
transverse profile of 2; according to (3.5) this occurs when C / C o  = +a. Graphs of 
{ C ( a C , - C ) / ~ $  against r,~ were then drawn, and i t  can be seen from figure 4 that  this 
quantity is a constant, within experimental error, for each dataset for 7 less than 
about 1.75. Thus each dataset in table 1 is consistent with (3.5)) and the value of the 
constant is p-i. Unfortunately all values of C and 2 had to be read from the graphs 
in the published papers and this unsatisfactory procedure accounts for a substantial 
proportion of the scatter in the graphs in figure 4; these reading errors are relatively 
greatest a t  the larger values of 7 where both 2 and C(aC,-C) approach zero. 

Table 2 gives the values of a and p for all the datasets. These values are very 
comparable with those given for some of the experiments by Chatwin & Sullivan 
(1987a), and obtained by a least-squares procedure. 

Although the method used in obtaining figure 4 artificially highlights measure- 
ment, and graph-reading, errors in the low values of C and ? at  higher values of 7, 
figure 5 suggests that  these are likely to be of little practical significance. The simple, 
and physically based, equation (3.5) provides a t  least as good a fit (and arguably 
better) to the data of Fackrell & Robins (1982) as a complicated formula due to 
Wilson, Robins & Fackrell (1982), viz. 

(3.6) 
- 
c2 = 0.784jexp [-ln 2 157-0.6 1' 7]-0.6exp [-ln 2 1 q f 0 . 6  Il']). 

This was based on a source-sink image system hypothesis, and all the numbers in 
(3.6) had to be determined from the data. 

3.3. Comments on experiments by Nakamura, Sakai & Miyata (1987) 
It will be observed that the numbers in table 2 satisfy 1 < 01 < 2 and p < 1, and 
further interpretation of the values of these parameters will be given later. However, 
a single comment about 01 is appropriate here. It follows from (3.5) that 

- 
c2 = p[$? c; - (C - +01Co)2]. (3.7) 
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'I 

2 t  
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1 2 

(9) 
4. 

1 2 
'I 

FIGURE 4. Graphs of p-i = {C(aCo-C)/?$ versus 7 for the datasets in table 1,  where a and /3 are 
defined in (3.5). The numbers on the graphs, e.g. (2), correspond with those in table 1 .  

NO. a ,8 NOTES 

( 1 )  1.31 0.16 Values from empirical 
relationship in paper 

(2) 1.17 0.46 
(3) 1.16 0.34 
(4) 1.09 0.46 Data for z/d = 102 
(5) 1.24 0.12 
(6) 1.27 0.14 Data for z / d  = 40 
(7) 1.52 0.37 
(8) 1.35 0.72 Data for z / H  = 5.00, 5.92 
(9) 1.15 0.20 

TABLE 2. Values of a and ,8 for table 1 datasets 
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FIGURE 5. Comparison of (3.5) (0 )  with boundary-layer data from Fackrell & Robins (1982) ( x ), 
where c: is the maximum value of cz.  The dashed curve is (3.6). 

Since C < C, everywhere a t  any fixed cross-section, an off-axis maximum in the 
transverse profile of 3 occurs only if u < 2. There is no fundamental physical reason 
why this condition should always be satisfied and, indeed, there is good experimental 
evidence that it is not. Data on the dispersion of dye in grid-generated water 
turbulence taken with a light absorption probe by Nakamura, Sakai & Miyata (1987) 
showed no off-axis maximum in the transverse profiles of 3, although these were 
‘nearly ’ self-similar. It was noted that this observation contradicted the results of 
Gad-el-Hak & Morton (1979), no. (7) in table 1 and figure 4. The main point of 
interest here is that Nakamura et al. (1987) showed (their figure 16) that their profiles 
of 2 could be fitted well by a curve whose equation (obtained by rearranging their 
equation (31)) is exactly (3.5) with a = 3 (their P is the present a) and p = 1. No off- 
axis maximum of 2 therefore occurs. 

Two further points about these experiments are relevant. Nakamura et al. (1987) 
attributed the differences between their results and those of Gad-el-Hak & Morton 
(1979) to the fact that their fluctuating concentration field was highly intermittent 
everywhere unlike that recorded by Gad-el-Hak & Morton (1979), and i t  would be 
very interesting to know whether this difference in intermittency behaviour was 
genuine, or due to differences in the degree of instrument smoothing. It was also 
shown that the observed values of 2 were strongly dependent on the source geometry 
consistent with the theoretical explanation by Chatwin & Sullivan (1979). 

4. Higher moments 
Although (3.5) is simple, it does appear to describe the data on 2 remarkably 

accurately, and - with this encouragement - it is natural to extend the ideas of $ 3  to 
higher moments, including shape parameters like skewness and flatness factor (or 
kurtosis). 
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The moment generating function M ( s )  is defined by 

m -  

M ( s )  = 1 + C" (2) = e(B-c)sp do. 
n-2 

Applying this to the basic p.d.f. (3.1) on which (3.5) was based gives 

and then, on expanding the right-hand side and eliminating n using (3.2), 

( 3 (4.3) 
C - 

c"=-(e,-C)"+(-l)n 1-- C". 
01 

It is elementary to check that (4.3) vanishes as + 0 (there is then no scalar, and 
note that 0 < C < 8,) and when C = 8, (all the fluid is then occupied by scalar, i.e. 
n = 1 everywhere). 

The hypothesis made in $3 will be extended in the obvious way to all n by 
replacing, in (4.3), ( a )  8, by the local concentration scale aC, and ( b )  equality by 
proportionality. Thus (4.3) becomes 

c,. 
C" o c - { ( z ( a - X ) n + ( - i ) n ( a - 2 ) Z n ] ,  
- 

a 
where 

2 = c/c,. 

(4.4) 

(4.5) 

where p, y ,  S are the constants of proportionality for n = 2 , 3 , 4  respectively, and the 
first of (4.6) is the same as (3.5). The shape parameters S (skewness) and F (flatness 
factor) then satisfy-/- 

Despite the extreme simplicity of the physical model underlying (4.4), (4.6) and 
(4.7), these results have surprisingly rich structure. Some features of this structure, 
obtainable by elementary mathematics, are given in table 3. This structure is also 
shown by figure 6 (except for a > 3 + 4 3  for which there are no known data). 

4.1, Comparison with data 
Measurements of the higher moments are less common than those of C and 2, and 
they are also more difficult, partly because of enhanced sampling errors. Kendall & 

t The formulae corresponding to  (4.7) that  follow from (4.3), rather than (4.4), are given by 
Chevray & Tutu (1977). 
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I I 

I 

l < a < 3 - 2 / 3  
(a = 1.2) 

3 - d 3  < a  < 2 
(a = 1.6) 

2 < a < 3 +  d 3  
(a  = 3) 

FIGURE 6(a-c). For caption see facing page. 

Stuart (1977, p. 249) emphasize how rapidly the standard errors of measured 
moments increase with order. Sreenivasan (1981) notes the slow convergence of 
measurements of S ,  whiie Antonia, Chambers & Elena (1983 b)  point out that there is 
a larger scatter in the determination of an odd moment when its magnitude is small. 
Figures 6 and 7 of Pitts & Kashiwagi (1984) illustrate how large the scatter can be 
in practice for S and F. Despite such problems, available data on the higher moments 
are remarkably consistent with certain properties of the theoretical predictions (4.6) 
and (4.7). 

In the first place, for cases for which there are appropriate measurements, the 
transverse profiles of S and F become self-similar. These include a plane wake (LaRue 
& Libby 1974; Sreenivasan 1981), a heated round jet (Antonia et al. 1975; Chevray 
& Tutu 1977), a round methane jet exhausting into air (Birch et al. 1978; Pitts & 
Kashiwagi 1984), a thermal mixing layer (LaRue & Libby 1981) and a reacting jet 
diffusion flame (Drake, Shyy & Pitz 1985). I n  all these examples, the centreline 
(7 = 0) value of S is negative, the profile of F has an off-axis minimum and the 
values of both S and F are very large and positive at  values of 7 greater than 
about 2 ,  entirely consistent with (4.7) - see table 3 and figure 6(d ) .  
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FIGURE 6. The shapes of the first three moments, (a),  ( b ) ,  ( c ) ,  and the shape parameters, (d ) ,  ( e ) ,  
where the functions plotted are defined in (4.6) and (4.7). In  order to draw the graphs it has been 
assumed - see (3.4) - that z = C/C, = e-f?', and particular values of a have been chosen as 
indicated, but the shapes are not sensitively dependent on these arbitrary selections. Collectively 
the graphs show the complete behaviour (except for magnitudes) that can occuf for practical values 
of a. The notation vt on the sketches corresponds to z< in table 3, i.e. z, = e-gt (i = 0, 1). 

Moreover the zero of S always coincides (approximately or better) with the 
minimum of F and - in cases where profiles of 2 are also given -with the maximum 
of 3. This agrees with a basic premise of the hypothesis in the present paper, namely 
the existence of the local concentration scale aC,, where the constant a has the same 
value for all moments as in (4.4) and (see table 3) the maximum of 2, the zero of S,  
and the minimum of F, occur where r,~ = ?lo, i.e. x = xo = ;a. (It follows that for all the 
data quoted above the value of a is less than 2.) From (4.4) it is straightforward to 
show that, when a < 2, these properties ofS  and F extend to - -  shape parameters of still 
higher order. In particular all odd-order _ _  shape parameters C ~ ~ + ~ / ( C ~ ) ~ + ;  are zero, and 
all even-order shape parameters c ~ ~ / ( c ~ ) ~  have a minimum for n > 1 ,  when q = T ~ ,  
x = xo = $a. Qualitatively the profiles of all odd and even parameters are like those of 
fs and f F  respectively in figure 6 (d), although the approach to  infinity with increasing 
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FIGURE 7 ( a ) .  For caption see p. 548. 

7 is more rapid the higher the order. These predictions are consistent up to order 8 
with measurements in a round jet by Antonia & Sreenivasan (1976); further (and 
despite the difficulties of measurement) the numerical values that they report are 
shown to agree with (4.4) to much better than an order of magnitude by Chatwin & 
Sullivan (1987 b) .  Antonia et al. (1983 b)  present other empirical evidence that 
supports these predictions and observe that they hold to good approximation in 
several different shear flows, again consistent with the underlying hypothesis of the 
present paper that  (4.4) is universally applicable. In  the same paper Antonia et al. 
(1983 b)  show that measurements from several different shear flows appear to collapse 
on power-law graphs of the form 
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FIGURE 7 ( b ) .  For caption see p. 548 

where m x 0.4 and n w 0.65 are the same for all the flows. It is of interest to note that,, 
over the relevant parameter ranges, the predictions from (4.4) are well approximated 
by such relationships with m w 0.47 and n x 0.68, reasonably near the experimental 
values. While the numerical agreement is supportive of (4.4), the power laws 
themselves are unlikely to  have any physical meaning, being due merely to 
arithmetical chance. 

Sreenivasan (1981 - plane wake) and Browne, Antonia & Chambers (1984 - plane 
jet) show the axial variation of S and F in the region before similarity has been 
established. While the approach o f S  to its negative value a t  9 = 0 is different in the 
two flows - in the plane wake SJ,,, is positive for z /d  < 78 and negative thereafter 
whereas in the plane jet i t  is positive for 8 < z /d  < 14 and negative elsewhere - a zero 
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FIGURE 7. Comparison of three datasets with (4.6) and (4.7). The solid curves are theoretical and 
the solid circles are obtained from the data in the way described in the text. (a)  LaRue & Libby 
(1974) ; ( b )  Antonia et al. (1975) ; x , data from Antonia & Sreenivasan (1976). (c) Birch et al. (1978). 

of S coincides with a minimum of F in both cases. In  the plane jet this position is also 
one where the moments of order 5 and 7 vanish. Of course (4.4) does not apply here 
since self-similarity has not been established, but the same phenomena are predicted 
by (4.3). It therefore seems that the transition from (4.3) to (4.4) as z / d  increases, due 
entirely to K ,  is one in which these robust properties are preserved. Figure 12 of 
Browne et al. (1984) shows, however, that there are great changes in the shape of the 
p.d. f .  of concentration in this transition region. 

Quantitative comparisons of three datasets with (4.6) and (4.7) are shown in figure 
7 .  In  each case data for S and F were read from the graphs in the paper; these were 
then used to estimate 2 and 2 by using the readings of 2 already employed in figure 
4. (None of the papers gives profiles of 3 and 2.) Smooth curves of best fit were 
drawn by eye to the data thus obtained, and the solid circles in figure 7 are readings 
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Dataset Y d  
LaRue t Libby (1974), plane wake 0.3 0.2 

Antonia et al. (1975), round jet with 0.15 0.08 

Birch et al. (1978), round methane jet 0.034 0.035 

TABLE 4. Values of y and S for the theoretical curves in figure 7 

coflowing stream 

from these curves. The values of y and 6 shown in table 4 were chosen as those that 
appeared to give as reasonable agreement as possible between the (modified) data 
points and the theory of (4.6) and (4.7). The judgement was based on visual 
comparison only, with emphasis on overall shape and order of magnitude. The values 
of a and p used in this process and in drawing the curves in figure 7 were, of course, 
those obtained earlier and given in table 2. It will be seen that the comparisons in 
figure 7 are generally less good than those involving 2 alone ; nevertheless there is 
reasonable agreement for the S,  F and z / C :  profiles, given the difficulties of ( a )  
making the measurements, and (b)  reading accurately from the published graphs. 
These difficulties, and the procedure used to interpolate to the data, could account 
for the principal difference in all three cases between theory and experiment, namely 
that the data are flatter in the central portion than (4.6) and (4.7) predict. The z/C: 
comparison is less satisfactory, but i t  is for this profile that  the difficulties referred 
to  will have greatest effect. (These comments on figure 7 apply also to other 
comparisons between the same data and the same theory given by Chatwin & 
Sullivan 1987 b.) 

5. Discussion 
On the basis of the evidence presented above, the basic hypothesis of this paper 

would seem to merit further experimental investigation. Its most attractive features 
are its simplicity, and its apparent applicability to all shear flows. (Irrespective of 
whether the present hypothesis proves, ultimately, to  be correct, the similarity of the 
comparisons, for different shear flows, between theory and experiment, apparent 
from figures 4 and 7 for example, suggests that there is some hypothesis applicable 
to all flows.) The remainder of this paper comments on some important questions 
raised by the work above. 

5.1. The probability density function 
Since a p.d.f. is determined by the set of its moments (except for some pathological 
and unpractical cases), self-similar structure of 2 for all n implies that p ( 8 ; x )  is also 
self-similar, where - as the notation indicates - attention will be restricted to 
statistically steady situations with the p.d.f. independent of t. Mathematically the 
argument requires some uniformity conditions on the rapidity of approach to self- 
similarity of 2, but this point is never likely to have practical importance because 
p(f3;x)  is determinable effectively from a small number of its moments (Birch et al. 
1978 ; Derksen & Sullivan 1989). Many workers assume such self-similarity without 
comment, but Sreenivasan (1981 ; plane wake) and Dowling & Dimotakis (1988 ; 
round jet) explicitly measure the approach to self-similarity . The latter authors note 
decreased statistical convergence as q increases, i.e. near the edges of the jet. 
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It is shown in Chatwin & Sullivan (19894 that  p ( 0 ; x )  has the exact representation 
(cf. (3.1) above) : 

P(W = now $(o +{I - n , ( x ) w ; x ) ,  (5.1) 

where no(x) is a proposed new measure of the intermittency factor. When the 
dispersing scalar has uniform concentration O1 on release, as in all the experiments 
discussed in this paper, 

where $(B;x) and ~ ( 0 ; x )  are themselves p.d.f.s. They are defined in relation to the 
(hypothetical) ensemble of dispersion experiments which is identical in all respects to 
the real one except that there is no molecular diffusion. If r0(x,  t) denotes the scalar 
concentration in this hypothetical ensemble, then @ and 91 are the p.d.f.s of r (the 
real concentration) conditional, respectively, on ro = and ro = 0, and have simple 
physical interpretations. For example I++ is the p.d.f. of concentration in those fluid 
particles emanating from the source. In  the absence of molecular diffusion the p.d.f. 
is given by (3.1) so the manner in which I++ and T differ from delta functions is entirely 
due to molecular diffusion. 

From (5.1) and (5.2) self-similarity of p ( 0 ; x )  is ensured far enough downstream 
(since no(x) + 0 as 1x1 +oo) provided rp(0;x) becomes self-similar, and then p FZ 9. 
However, the self-similarity of p ( 0 ; x )  observed in a round jet by Dowling &, 
Dimotakis (1988) appears essentially to be established on the centreline at only 20 
(or so) jet diameters downstream where no is as high as 0.21. The following argument 
suggests why the effects of molecular diffusion may cause self-similarity to be 
established more rapidly in practice than is ensured by (5.1) and (5.2). 

Consider the set of fluid particles that  go through the point with position vector 
x. As indicated schematically in figure 8, this set comprises two mutually exclusive 
subsets. Choose ql to have any fixed value of about 2. Then the trajectory of any one 
fluid particle will have crossed q = 0 more recently than y = ql (set 0), or vice versa 
(set 1). (For x far enough from the source, those particles that have crossed neither 
q = 0 nor q = ql will be a negligible proportion.) For set 0, suppose the crossing 
occurs a t  z = 2, and let q0(Q be the p.d.f. of 2, i.e. 

for any z o ;  define q I ( Q  analogously for set 1.  The dependence of qo and q1 on x is not 
shown explicitly, nor known, but certain features are obvious. Thus as q (the non- 
dimensional transverse coordinate of x) approaches zero, qo approaches a([- z ) ,  
where z is the axial coordinate of X ;  in general qo will be non-zero over a range of 
values of g whose effective width, say A ,  tends to zero as y+O.  Corresponding 
comments apply to ql .  

It will now be assumed that the effects of molecular diffusion are significant only 
over axial lengthscales of order z and, correspondingly, can be neglected over 
lengthscales of order A .  While it is clear that this assumption will be best near 
q = 0 or y = yl, its validity in general follows from the facts that the statistics of the 
fluid particle trajectories are determined by the fast (and self-similar) large-scale 
motions in the shear flow, and that, as 1x1 increases, the instantaneous concentra- 
t,ion gradients over the bulk of the flow reduce so that molecular mixing becomes 
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FIGURE 8. Sketch illustrating schematically the two sets of trajectories : 0 (- - 0 )  
and 1 (---). 

increasingly slower. Therefore, to good approximation, the value of f ( x , t )  can be 
taken to be its value a t  its last crossing of 7 = 0 or 7 = v1 (as appropriate). Hence 

where the use of the symbol A denotes integration from z -  A to z. 
It is now convenient to express p ( 6 ;  0,c) and p ( 8 ;  ql,  g) in the forms 

where, using the basic property of p ( 8 ; x )  and the definition of C in (1.2), 

J o  J o  J o  J o  

The moments of r about zero, i.e. E ( P }  - where E denotes expectation in standard 
statistical terminology - satisfy 

E { P }  = /omc9*p(B;x)dH, 

so that, using (5.5) and (5.6), 

(5.7) 
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Since T~ has been chosen so that Ct(5 )  % C n ( ~ , ,  5) for large enough 5, and since xo and 
x1 are of order 1 ,  it follows that 

E{r"} x s, C X )  4 0 K )  [ J; rnx0 dr] dL (5.9) 

for large enough z. Moreover, the scaling of p ( 0 ;  0,c)  in (5.5) is very likely to ensure 
that 

is, at worst, an extremely slowly varying function of 5 ;  thus (5.9) can be simplified 
further to  

r 

where 

(5.10) 

(5.11) 

and can be taken as constant. 
In  the interests of algebraic simplicity, these arguments have - been presented in 

terms of E { P }  rather than the central moment E{(T-C)n} = en considered earlier. 
However, there is a straightforward algebraic relationship (Kendall & Stuart 1977, 
p. 58) between the two sets of moments from which it is easy to see, in particular, 
that one set of moments is self-similar if and only if the other set is. Reference to 
(5.10) shows that E { P }  depends on x only via the dependence of qo on x, and this 
dependence was discussed above. Hence both sets of moment's - and therefore p ( 8 ;  x) 
- are self-similar provided only that the single function qo is a self-similar function 
of x (not necessarily of 5).  While there is no proof that this is so, nor any data, it does 
not seem to be an unreasonable requirement (given the observed self-similarity of the 
low-order moments). In that case the eventual structure of p ( 0 ; x )  is essentially 
dominated by events on the line q = 0. Physically the arguments show that self- 
similarity of p ( 0 ;  x) occurs because of the self-similarity of the fast large-scale eddies 
in all the flows under consideration, together with the slow process of complete 
mixing caused by molecular diffusion ; a further consequence (already assumed in the 
earlier data analysis) is that the scaling factors a, /3, y ,  6 , .  . . ought to  be constant. (For 
completeness i t  might also be noted that a lack of coincidence between the 
contaminant source and the fluid momentum source, e.g. a jet, may delay - but is 
unlikely to  prevent -the onset of self-similar structure of p ( 0 ; x )  and other 
concentration fluctuation statistics.) It was noted earlier, following (5.1), that p ( 8 ;  x) 
must evcntually approach cp(8; x), thc p.d.f. of concentration in those fluid 
particles not originating from the source, and therefore initially devoid of scalar. This 
occurs only because such fluid particles are entrained into the core of the flow by the 
large eddies (where their volume eventually dominates over fluid particles originating 
from the source) but self-similarity occurs only when the much slower process of 
molecular transfer from the source particles is complete. 

The above argument does not deal with the dependence of the p.d.f. on 0 once self- 
similarity has been established. However, for completeness, it can be recorded that 
Chatwin & Sullivan (1987 b )  and Derksen & Sullivan (1989) showed that, for many 
of tbe shear flows considered in this paper, p ( 0 ;  x) could be quite well described by 
the family of Beta distributions (Kendall & Stuart 1977, p. 162). This family has also 
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Dataset 8: sf 
LaRue & Libby (1974) 0.68 0.67 0.67 

Antonia et al. (1975) 0.58 0.53 0.53 

Birch et al. (1978) 0.37 0.32 0.43 

TABLE 5. Test of (5.12) for the datasets of table 4 and figure 7 

been used by other workers, including Effelsberg & Peters (1983) and Drake et al. 
(1985). 

5.2. The values of p, y ,  6 ,... 
The quantity p was first introduced in (3.5) to allow for possible overall reduction of 
measured values of c" (relative to  the hypothetical K = 0 result) additional to  that 
due to reduction, by molecular diffusion, of the maximum concentration. The latter 
effect is directly measured by the quantity a,  with a reduction of the maximum from 
O1 to (order) aCo. However, conservation of mass requires this reduction to be 
accompanied by an overall increase in the background concentration (from zero 
when K = 0) ,  and therefore a further reduction in the range of concentration values. 
Given that (3.5) describes the observations, it seems reasonable to  interpret as the 
order of magnitude of this scale reduction. 

However, since all moments are estimated from the same data record, there is an 
immediate _ _  inference that the quantities y ,  6, ... , introduced in (4.6) for the higher 
moments c3, c4 , .  . . , satisfy (at least to an order of magnitude) 

pi = yz = a a  = ... . (5.12) 

Table 5 shows that, for the datasets considered in table 4 and figure 7, (5.12) is 
satisfied to  a degree of accuracy that is remarkable given the semi-qualitative 
methods used to estimate y and 6. A comparable degree of agreement for moments 
up to order 8, measured by Antonia & Sreenivasan (1976), can be inferred from 
results in table 1 of Chatwin & Sullivan (1987b). It might also be noted that the 
argument above suggests that values of p very near 1 arise only when there is 
relatively little reduction in the maximum concentration, i.e. when a is relatively 
high. This interpretation is consistent with the apparently anomalous results of 
Nakamura et al. (1987) discussed earlier where a = 3 and p = 1 ; these experiments 
were in water (with a very low value of K )  unlike those of Gad-el-Hak & Morton (1979) 
that were in air (but otherwise the same). 

The data analysis of this paper has been restricted to values of 7 over which p, as 
determined from figure 4, could be regarded as constant. Given the interpretation 
immediately above, it is interesting (and worth further investigation) that, for all the 
data examined, there is a wide range of such values of 7. Nothing in this 
interpretation requires /?to be constant and it is possible that (3.5), (4.6) and (5.12) 
could apply outside this range with /3 being a function of position. 

1 1  

5.3. Instrument smoothing 

It has already been noted that increasing attention is being paid to the effects of 
instrument smoothing, i.e. to the differences between the measured and actual values 
of quantities like c2,c3, ... caused by the inability of the measurement system 
adequately to  resolve the fine-scale and high-frequency structure of the scalar field. 

_ _  
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The reduction in the range of concentration values leading to (5.12) could be due in 
part to such smoothing, and - indeed - Chatwin & Sullivan (1987 a )  discussed 
whether the difference between /3 and 1 could be due entirely to t,his effect. The 
argument above, based on mass conservation, now shows this to be an untenable 
position; however, there is little doubt that  part of the difference, perhaps a large 
part, could be due to instrument effects. 

Important new experimental results by Sakai et al. (1989) on dye dispersion from 
a round jet in a water channel confirm the strong _ -  potential influence of instrument 
smoothing on #3, and hence on perceived values of c2, c3 , .  . . . Two different probes were 
used to measure the profiles of C and 2. I n  both cases the results satisfied the main 
hypothesis of this paper, viz. (3.51, and the two values of 01 were almost the same as 
that recorded by Becker et al. (1967) for a round jet of oil smoke in air; see table 2. 
However, the sampling volumes V,  of the two probes differed by a factor of about 70. 
The value of /3 for the larger probe ( V ,  x 1.6 x m3) was 0.160, again close to the 
value for the Becker et al. (1967) dataset,. But the value of /3 for the smaller probe 
( V ,  x 2.4 x m3) was 0.248, i.e. about 55% higher than for the larger probe. This 
corresponds to an increase of the same order in the perceived value of ? at  y = 0. 
Such results, and theoretical work such as that referred to elsewhere in this paper, 
suggest strongly that there is an urgent need for further experiments that specifically 
examine instrumentation effects on perceived concentration fluctuations. Without 
such experiments it will remain impossible to have full confidence in laboratory tests 
of theories. 

5.4. Concluding remarks 

The degree of agreement between the laboratory data discussed in this paper and the 
formula (3.5), the apparent robustness of some of the other proposed theoretical 
structure (e.g. its applicability, noted several times in the body of the paper, in other 
than self-similar conditions), and the algebraic simplicity of the formulae, make it 
plausible that the theory should be useful in predicting a t  least orders of magnitudes 
in many of the complicated practical problems to which concentration fluctuations 
are relevant. One important class is the assessment of hazards associated with the 
release of flammable or toxic gases following accidental loss of containment. In  such 
cases, however, it  is important to  bear in mind the likely significant differences 
between actual and perceived fluctuations that were discussed immediately above. 

It was noted a t  the beginning of this paper that its methodology is unusual, and 
does not relate to previous theoretical and computational approaches. It is intended 
to examine in the near future whether the simple algebraic models considered here 
are consistent with the equations governing quantities like C and c', and how they 
relate to other approaches such as p.d.f. models, second-order closures, direct 
simulations and random walk calculations. In the field of containment dispersion 
research there is now a need for a thorough and critical comparison of the many 
techniques that are currently employed; it is hoped that the present contribution will 
be useful in this task. 

We have been helped by many people, and we would particularly like to thank 
Professor R.  A. Antonia, Dr Y. Sakai and Professor K. R. Sreenivasan, and our 
colleagues Dr Nils Mole (Brunel) and Dr Handson Yip (Western Ontario). We wish 
to acknowledge financial support from NATO (Research Grant No. RG.115.81), from 
the Natural Sciences and Engineering Research Council of Canada, and from the UK 
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